68 research outputs found

    Construction of the class FN

    Get PDF

    A ϕ\phi-Competitive Algorithm for Scheduling Packets with Deadlines

    Full text link
    In the online packet scheduling problem with deadlines (PacketScheduling, for short), the goal is to schedule transmissions of packets that arrive over time in a network switch and need to be sent across a link. Each packet has a deadline, representing its urgency, and a non-negative weight, that represents its priority. Only one packet can be transmitted in any time slot, so, if the system is overloaded, some packets will inevitably miss their deadlines and be dropped. In this scenario, the natural objective is to compute a transmission schedule that maximizes the total weight of packets which are successfully transmitted. The problem is inherently online, with the scheduling decisions made without the knowledge of future packet arrivals. The central problem concerning PacketScheduling, that has been a subject of intensive study since 2001, is to determine the optimal competitive ratio of online algorithms, namely the worst-case ratio between the optimum total weight of a schedule (computed by an offline algorithm) and the weight of a schedule computed by a (deterministic) online algorithm. We solve this open problem by presenting a ϕ\phi-competitive online algorithm for PacketScheduling (where ϕ1.618\phi\approx 1.618 is the golden ratio), matching the previously established lower bound.Comment: Major revision of the analysis and some other parts of the paper. Another revision will follo

    Revealed automorphisms

    Get PDF
    summary:We study automorphisms in the alternative set theory. We prove that fully revealed automorphisms are not closed under composition. We also construct some special automorphisms. We generalize the notion of revealment and Sd-class

    Well-quasiordering depends on the labels

    Get PDF

    Online Bin Stretching with Three Bins

    Full text link
    Online Bin Stretching is a semi-online variant of bin packing in which the algorithm has to use the same number of bins as an optimal packing, but is allowed to slightly overpack the bins. The goal is to minimize the amount of overpacking, i.e., the maximum size packed into any bin. We give an algorithm for Online Bin Stretching with a stretching factor of 11/8=1.37511/8 = 1.375 for three bins. Additionally, we present a lower bound of 45/33=1.3645/33 = 1.\overline{36} for Online Bin Stretching on three bins and a lower bound of 19/1419/14 for four and five bins that were discovered using a computer search.Comment: Preprint of a journal version. See version 2 for the conference paper. Conference paper split into two journal submissions; see arXiv:1601.0811

    The complexity of coloring graphs without long induced paths

    Get PDF
    We discuss the computational complexity of determining the chromatic number of graphs without long induced paths. We prove NP-completeness of deciding whether a P8-free graph is 5-colorable and of deciding whether a P12-free graph is 4-colorable. Moreover, we give a polynomial time algorithm for deciding whether a P5-free graph is 3-colorable

    Solution of David Gale's lion and man problem

    Get PDF
    AbstractA pursue-and-evasion game is analyzed, including almost optimal bounds on the number of moves needed to win

    Better Approximation Bounds for the Joint Replenishment Problem

    Full text link
    The Joint Replenishment Problem (JRP) deals with optimizing shipments of goods from a supplier to retailers through a shared warehouse. Each shipment involves transporting goods from the supplier to the warehouse, at a fixed cost C, followed by a redistribution of these goods from the warehouse to the retailers that ordered them, where transporting goods to a retailer ρ\rho has a fixed cost cρc_\rho. In addition, retailers incur waiting costs for each order. The objective is to minimize the overall cost of satisfying all orders, namely the sum of all shipping and waiting costs. JRP has been well studied in Operations Research and, more recently, in the area of approximation algorithms. For arbitrary waiting cost functions, the best known approximation ratio is 1.8. This ratio can be reduced to 1.574 for the JRP-D model, where there is no cost for waiting but orders have deadlines. As for hardness results, it is known that the problem is APX-hard and that the natural linear program for JRP has integrality gap at least 1.245. Both results hold even for JRP-D. In the online scenario, the best lower and upper bounds on the competitive ratio are 2.64 and 3, respectively. The lower bound of 2.64 applies even to the restricted version of JRP, denoted JRP-L, where the waiting cost function is linear. We provide several new approximation results for JRP. In the offline case, we give an algorithm with ratio 1.791, breaking the barrier of 1.8. In the online case, we show a lower bound of 2.754 on the competitive ratio for JRP-L (and thus JRP as well), improving the previous bound of 2.64. We also study the online version of JRP-D, for which we prove that the optimal competitive ratio is 2
    corecore